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An optimal system of first-order algebras of the system of equations for the rotationally-symmetric unsteady motion of an 
inhomogeneous liquid is constructed. New exact solutions of certain factor systems are found which describe motions with free 
boundaries or internal non-linear waves. © 1999 Elsevier Science Ltd. All rights reserved. 

The problem of finding the invariant submodels of a certain system of differential equations of mechanics 
which admit a Lie algebra of operators reduces to constructing the optimal systems of subalgebras of 
this algebra of different orders. The method of finding the optimal systems of subalgebras has been 
described in [1, 2]. In the case of an infinite-dimensional Lie algebra, the optimal systems of subalgebras 
have been calculated [3, 4] in the case of the Navier-Stokes equations for the rotationally-symmetric 
motions of a homogeneous liquid and a three-dimensional Euler system. The optimal system of first-order 
subalgebras of the system of equations for the rotationally-symmetric motions of an inhomogeneous 
liquid is constructed below. Certain factor systems are integrated and a physical interpretation of the 
exact result obtained is given. 

1. THE OPTIMAL SYSTEM OF SUBALGEBRAS O1 

The equations for the rotationally-symmetric motions of an inhomogeneous liquid in a cylindrical 
system of coordinates (r, 0, z) 

ut + UUr + WU~ -- r -102 + p- lpr  = 0 

l) t + UIJ r + WI} z + r - I u v  = 0 (1.1) 

w t + UW r + WW z + p - l p z  = 0 

p, + upr + wpz = O, Ur + r- lu  + w.. = 0 

are considered. Here u is the radial component, ~ is the tangential component and w is the axial 
component of the velocity vector, p is the density of the liquid and p is the pressure (which are all 
functions of the variables (t, r, z)). 

The basis of the Lie algebra which is admitted by system (1.1) consists of the operators~t 

Xl = 3z, X2 = t3z + ~w, X3 = ~t 

X4 = 2r3r + 2zaz + t~t + u ~  + oOv + w~, ,  + 2p~ ,  (1.2) 

X5 = r~r + za,  + tat, )(6 = p~p + p~p 

x7 = -r-2v-lp-zav + r-2ap, x8(~0) = ~0a~,  

The algebra is infinite-dimensional since the operatorXs(tp) contains an arbitrary function tp(t), we shall 
denote the Lie algebra with the basis of operators (1.2) by L. 

One can use the equivalence transformation 
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( t , r , z ,u ,  u ,w,p,p)--~ ( t , r , ' z ,u ,o ,~, ,p ,p)  
(1.3) 

T--t ,  -z=z + gt2]2, w = w  + gt 

to describe the unsteady motions of a liquid in a gravity field directed along the z axis, where g is the 
acceleration due to gravity. When this substitution is made, the structure of Eq. (1.1) is preserved and 
it is only on the right-hand side of the third equation that -g  appears. Every exact solution of Eqs (1.1) 
is translated into an exact solution of the equations of a heavy liquid by transform (1.3). 

Sometimes, in constructing a factor system on an operator containing X7, it is convenient to introduce 
a new function h -- (r~) 2 which is the square of the angular momentum of a liquid particle around the z 
axis. In this case, we shall make use of another way of writing the first and second equations of system (1.1) 

U t + UU r + WU z -- r'-3h + p-lpr = O, h t + uh r + wh z = 0 (1.4) 

The operator X7 acquires the simpler form 

X7 = -2p-l~b + r -2~t, 

In constructing the exact invariant solutions of system (1.1), we shall endeavour to ensure that these 
solutions (from the point of view of the admissible groups of transformations) are substantially different. 
Such solutions are obtained when solving factor systems constructed on operators from the optimal 
systems of algebras. The method of searching for the operators of the optimal systems of subalgebras 
has been described in detail in the papers by Ovsyannikov [1, 2]. 

In forming the optimal systems of subalgebras for the operators (1.2), the commutators of the 
operators were first calculated using the formulae [1] 

ix,, xj] = cijk xk = x,(xj) - x j  (xi) (1.5) 

Here C k are structural constants, i, j, k = 1 . . . . .  8 and the summation is over k. The structure of the 
algebra L of the operators (1.2) is investigated using the constants C~0., and the associated group A of 
internal automorphisms of the algebra L is calculated. 

To do this, an operator of the general form 

7 
X ~-- ~xixi-l" X8(tp), X ~ L 

i=l 

is considered, where x = (x 1, . . . ,  x 7, tp) is a vector of the coordinates of the operator X in the basis 
(1.2). Automorphisms Autxz of the algebra L are constructed on each operator X / e  L and the action 
of these 'automorphisms on X is found using the formula 

Autx,(aiXX)= X +-~![X, Xi]+~[[X,  Xi], Xi]+. . .  (1.6) 

where ai(i = 1 . . . . .  7) are parameters. Formulae (1.6) determine the coordinates ~ = (x 1 . . . . .  x 7, q~) 
of the transformed operator, which depend on the parameters ai and the vector x, generating the group 
A of automorphisms. The problem of finding the optimal system of subalgebras reduces to constructing 
the sets x = (x 1 . . . . .  x 7, q~), which are such that none of the vectors can be translated into another 
vector by the autmorphisms of the algebra L [2]. 

The complete group of transformation of the coordinates of the vector 

x ~ x = (~t . . . . .  3 7, ~) :  (1 .7)  

Al : ~ " (x,-a,(2x4 + xS),x2,x3,x4,xS, x6,xL ~t)) 

A2 : ~ = (x' + a2x 3, x 2 - a~, x a, x 4, :, x 6, F, ~t)) 

A 3 : X = (x I - aax 2, x 2, x 3 - a3(x 4 + :), x 4, x s , x 6, x 7 , tp(t - a3)) 

A 4 : X = ( e 2 a 4 x  I, ea4x 2, ea4x 3, X 4, X 5, X 6, e6a4x 7, e2a4ip(e-a4t)) 

A5 : ~ m (easx |, x29 X easx 3, X 4, x 5, X 6, e2aSx 7, tP(e-ast)) 
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A 6 " i = ( X  1, X 2, X 3, X 4, X 5, X 6, ea6x 7, ea6q~(t)) 
A 7 : X = (xl, x 2, x3, x4, x5, x6, xT-  aT(6x4 + 2x 5 +x6), q~(t)) 

A8 : X = (x I , x 2, x 3, x 4, x s, x 6, x 7, cp(t) - (2x 4 + x6)w(t) + (x 3 + t(x 4 + x'S))W(t)) 

is determined in accordance with formulae (1.6). Here A i is the transformation corresponding to 
Autx~ with the parameter  ai(i = 1, . . . ,  7) and the transformation As with the function ~(t) corresponds 
to Autx~s.(,). We conclude from the form of the transformations As that, if x 3 = x 4 + x 5 = x 6 + 
2x 4 = 0, ~hen ~(t)  = ~o(t) and, and if x 3 ~ 0 or x 4 + x 5 ~ 0 or x 6 + 2r 4 ~ 0, then a function W(t) 
can always be found such that {p(t) = 0. 

The operator  X is determined, apart from an arbitrary multiplier; the transformation of general 
extension B: x = ~ ,  [$ = const is therefore admitted in the case of the vector x. 

On carrying out a structural analysis of the table of commutators, we note that L = La_ 7 • L~0, where 
LI_ 7 = {X 1 . . . . .  X 7} is a finite-dimensional subalgebra and L¢ = {Xs(cp)} is an infinite-dimensional 
subalgebra (the ideal of the algebra L).  In turn, LI-3 = {Xa, )(2, X3} and L6, 7 = {X6, XT) are ideal in 
La-7. The following series of ideal is separated out and fixed 

0clt~lc{&a; ~}clq_3; ~,7; t~lcr  0.8) 

According to (1.8), a decomposition of  the algebra L = L6,7, ¢ ~)L 1-5 or L = L 1-3,6,7,~p ~) Z4, 5 is possible. 
This determines the sequence in which the subalgebras (or the coordinates of the vector x) are treated 
and the action of internal automorphisms on them. We initially consider L45 with the corresponding 
vector (x4xS). The versions (00), (x40), (Ors), (xax5),X 4 ~ 0,X 5 :;/: 0 are possible in the case o f  (xax5). Next, 
in L1_5, we consider the vector (xlxZx3x4x 5) depending on the vectors (x4x5) and the action of the group 
A of internal automorphisms (1.7). The result of this step is translated onto LI_ 7 with a vector (x 1 . . . . .  
x 7) taking account of  the action of group A. Finally, we consider the algebra L with a vector (x 1 . . . . .  
x 7, tp) and with the versions obtained for (x 1 . . . . .  xT). 

On taking account of further possible transformations from the group of automorphisms and the 
transformation of the general extension B of the vector x, we obtain the optimal set of vectors x. It is 
a set of  substantially different vectors which cannot be translated into one another by the 
transformations of  the group A of internal automorphisms. 

The optimal system of subalgebras ®1 for Eqs (1.1), which corresponds to the set of coordinate vectors 
x, is 

~ t  + 8X7 + Xg(cp), X2 + eX7 + Xs(q~), X 4 -  x5 - 2X6 + Xs(tp) 

etX2 + X3 + e2XT, ex2 + vX3 + X6, vX2 + x6 

f~ ' l  + X6, EX2 + )(5 + cX6, EX2 + X5 - 2X6 + vX7 

X4 + bX5 + cX6, X4 + bX5 - 2(3 + b)X 6 + vX7 

vX3 + )(4 - X5 + cX6, vIX3 + )(4 - X5 - 4X6 + v2X 7 

vX 1 + X 4 - 2X 5 + cX6, v I X  ! + X 4 - 2X 5 - 2X 6 + v2X 7 

6 =  {0; 1}; E, 81,1~2 = {-I;  0; 1}; V, v l ,v2  = {-1; 1} 

where b and c are arbitrary constants and q>(t) is an arbitrary smooth function. 
Note that Eqs (1.1) admit of the following discrete transforms of their variables 

(t, u, w) ~ (-t,  -u ,  -w) ,  (p, p) ~ (--p, -p)  

(1.9) 

(z, w) --4 ( -z ,  -w) ,  (r, u) --~ (-r, -u) ,  v --> - v  

although the second and fourth transforms do not have any physical meaning. The discrete transforms 
of the vector x 

E~ : i = (x I, - x  2, - x  3, x 4, x s, x 6, xL qg-t)) 

E2 : Jr= (x~,x2,x3,x~,xS, x6,-x7,--qgt)) 

Es : i =  (-x',-x2,x3,x4,xS, x6,xL ~t)) 
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where the transforms E 3 and E 4 are obtained as identity transforms, correspond to the given discrete 
transforms. 

If we take account of the transforms Eb  E2, E5 in the optimal system of subalgebras (1.9), we obtain 
a set of operators of the form (1.9) in which the constants e, el, e2 have to be put equal to {0; 1} and 
the constants v, Vl, v2 are equal to unity. 

2. S O M E  E X A C T  S O L U T I O N S  

Here, we shall only present those factor systems which correspond to the subalgebras from (1.9) which 
admit of solutions in quadratures. As a rule, these are systems for which the continuity equation can 
be integrated. Since the pressure is determined apart from a term which is an arbitrary function of time, 
this function is not taken into account in the final representation for the pressure. 

Example 1. We consider the first subalgebra from (1.9) when e * 0, 8 = 0. The invariants of the 
operator under consideration determine the form of the solution 

(u, u, w, p, p) = (U, V, W, R, ezq~(t) + P)  

and the functions U, V, W, R, P depend solely on (t, r). After substitution into (1.1), we obtain the 
equations 

W t + U U  r - I ~ i V  "2 + R-1P,. = O, Vt + U V r  + r q U V  = 0 
(2.1) 

W, + UWr + EIP(t)R -1 = 0, R t + UR r = O, (rU)r = 0 

The last equation of (2.1) is integrated, and U = C(t)/r with an arbitrary function C(t). 
We now introduce the Lagrangian coordinate ~ using the solution of the Cauchy problem 

Then, 

dr/dt = U, rlw_o = ~ (2.2) 

, ]J4 
r = [~2 + 2! C('0d'~J (2.3) 

It is now seen that the solution of the four equations of system (2.1) can be represented as 

t 

V=~Vo(~)r -I W=- q~(x)dX+Wo(~) (2.4) 

R = Ro({), P = - I  RoC{)r{tru - ~2V02(~)r-3]d~ 

with the arbitrary smooth functions R0({), W0({), V0({). 
Hence, the solution of the initial system (1.1) is 

u = r"lC(t), u = V(~, t), w = W(~, t) 

2-2!c( )ax] (2.5) 

and the functions V, I4, P are determined by Eqs (2.4). 
When C(t) = 0, solution (2.5) describes the unsteady vortex jet flow with a free boundary r(t) = 

~1 = const (or motion in a tube) along which a pressure q(z, t) = zip(t) + P(~I, t) is applied. If C(t) 
0, we obtained a description of the motion of a cylindrical shell with free boundaries rx(t) = r(~l, t), 
r2(t) = r(~2, t), (~1 > ~2), and r(~, t) is determined from (2.3). In both cases, the liquid density has an 
arbitrary distribution over the radius: p = R0(~). 

Remark. It can be verified that the factor system (2.1) admits of the equivalence transform 
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W ~ W + talt(t)R -1, ~t) --, ~t) - ~'(t) 

and the remaining functions and variables are not transformed. On accounts of this, transforms, taking 

t 
W = - I~( t )  dt 

0 

can be obtained in order that q~(t) = 0 and formulae (2.4) and (2.5) are simplified. 

Example 2. If e ;~ 0, fi ;e 0 (e2 = 1), the solution of Eqs (1.1), when account is taken of (1.4), can be 
sought in the form 

(u, h, w, p, p) = (U, H - 2ESzR -1, W, R, P + Eg(~r -z + q)(t))) 

where U, H, W, R, P are functions of the variables (t, r). Here, it has been taken into account that 
ez = 1. The factor system is then transformed to the form 

Ut + UUr - r-3H + R-1P~ = O, H t + UHr - 2eSWR -] = 0 

W t + U W  r + ER-I(~/~2 + (p(t)) = O, R t + U R  r = O, ( r U ) r  = 0 

This system, apart from the transform 

H -' ,  H - 2eSi~(t)R -~, W --> W - EI~'(t)R -~ 

P --~ P + ESI4(t)r "-2, (p --h (p + ltt"(t) 

has the general solution 

C(t) 2W°(~) t -  2e2i t .  1 
. . . ,  --~-7~,~, ~ ~ d ' c d a  + Ho(~) 

U =  r(g,t)  H =  Ro(~ ) no t%)oor  (~,'c) 

(2.6) e 5  t 1 
W =  R= 

where C(t), Ro(~), Wo(~), Ho(~) are arbitrary functions and the function r(~, t) is defined by (2.3). In 
this case, the solution of system (1.1) has the form 

I [n(-,t 2gZ q~ 

w = W(~, t), p = R(~, t) = Ro(g), p = ESzr-2(~, t) + P(~, t) 

The Lagrangian coordinate ~ is determined by the last equality of (2.5). 
If C(t) = 0 (u = 0), then formulae (2.7) describe motion in a tube which exists, generally speaking, 

for a finite time and the derivatives of the velocity component v(r, t) are destroyed. 

Example 3. We will now write the factor system for the operator (X2 + v_X7 + Xs((P) ). If e = 0, then 
the invariants of the operator determine the form of the solution 

(u, u, w, p, p)  = (U, V, W + zt -q, R, P + (p(t)zt "q) 

where the functions U, V, W, R, P depend on (t, r). After substitution into (1.1), we obtain the equations 

U t + UU r - r--IV "z + R-1Pr = O, V t + UV r + r- IUV = 0 

W t + UWr + t-IW + (tR)-lq)(t) = 0 

Rt + URr = O, (rU)r + t-Jr = 0 
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This system can also be integrated. Actually, apart from the transform 

W---~ W + ~ R  -1, ¢p---) cp- ( tW)" 

we obtain 

_ ~ ~Vo(P,} u= rf~,t) + c(t) v= w=l-wo(P,} 
2t r(~,t)' ,'(~,t) ' t 

R=Ro(~), P=-/Ro(~),~ r .  - r'¢,,O 1" 

The function r(~, t) is defined by the equality 

The physical quantities are given by the formulae 

u = u ( ~ ,  t) ,  o = ~ u o ( ~ ) r - l ( ~ ,  t ) ,  w = w ( ~ ,  t )  + r ~ z  

p = P(~, t), p = Ro(~) (2.9) 

When C(t) = 0, solution (2.9) describes the unsteady vortex jet flow with a free boundary r(t) = 
~l/~/t along which a pressure q(z,  t) = zcp(t) + P(~I, t) is applied. If C(t)  # O, we obtain the motion of 
a cylindrical layer with free boundaries 

rl(t ) = r(~l, t), r2(t ) = r(~2, t) (~1 > ~2) 

E x a m p l e  4. If e # 0 the solution of Eqs (1.1) and (1.4) can be sought in the form 

(u, h, w, p, p )  = (U, H - 2zs( tR)  -~, W + zt -~ , R, z.t -~ ( s t  -2 + 9 ( 0 )  + P)  

where U, H, W, R, P are functions of the variables (t, r). In this case, the factor system is 

U t + UU,  - r - 3 H  + R-tPr = O, H t + UH~ - 2 s W ( t R )  -I = 0 

W t + UW r + t-IW + (tR) -I (FJ "-2 + ¢p(t)) = 0 

R t + UR r = O, (rU)r  + rt -t = 0 

Apart from the transform 

H -~  H + 2Ep.(t)R -I, W --4 W -  ~ ' ( t ) R  -I 

P --> P + ~ t ( t ) r  -2, ¢p ---> ¢p + (t2$t'(t))" 

the general solution has the form 

U r ( ~ , t ) .  C(t)  1 ~. 1 dffd~ 
=- -,-~, H = Ho(P,)-2 Wo(~)+ 

2t r(~,t) 

=Lw, ---E--~ ' 1 o(g) I ~ x ,  W t Ro(P~) I r (P~,x) R = Ro(~) 

.- rH(~,t) rn(~,t)]d~ P= IR0(~)r~L~ 

The function r(~, t) is defined by (2.8). The components of the velocity vector, the density and the pressure 
are determined in this case using the formulae 
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u = U ( ~ ,  t) ,  u = H ( ~ ,  t) - 

( 2 . 1 0 )  
z, 

w = W ( ~ ' t ) + t  P=R°(~) '  P = r  (q, t ) t  

This motion is similar to motion (2.7) and is destroyed after a finite time. 

Example  5. In the case of the operator (vX2 + X6) (v 2 = 1) from the optimal system of subalgebras 
(1.9), the invariant solution has the form 

(u, v ,  w, p, p)  = (U, V, W + zt  -j , exp(vzt m )R, exp(vzt -1 )P) 

with the functions U, V, W, R, P of two variables (t, r). Equations (1.1) are written in the new variables 
a s  

U t + UU,  - V2r -! + R-1pr = O, V t + UV, + r - l U V  = 0 

VV t + U W ,  + t - i W  + v( tR)  -I P =  0 (2.11) 

R t + UR, + v t  -a WR = O, (rU) r + rt -I = 0 

It is found that system (2.11) can be reduced to a single non-linear, non-classical third-order equation. 
Actually, as in Examples 3 and 4, we have 

u -  r(~,t). C(t) ~Vo(~) 
w ~  . . . . .  " l "  ~ ~ V ~-- 

2t r(~,t) r(~,t) 

The function r(~, t) is given by (2.8). Furthermore, in the coordinates ~, t 

R' t , R ) ,  

Now, from the first equation of system (2.11), we obtain one equation in R(~, t) 

R :td~ r3 = 0  

which, by means of the substitution R = expQ, t = z -1, is reduced to the form 

~3v02c~)+~c2 ~ ~xc, 3 x~ (2.13) 

Equation (2.13) is somewhat simplified after the substitution ~ ---> ~2/2. However, even for the case 
when V0 = 0, C = 0, it is still not possible to construct a sufficiently wide class of exact solutions. 
Nevertheless, we shall point out one simple solution of Eq. (2.13) in the case when 

Q = a ~_.~ 2 "c 3 
. . . .  I" C I '[  + C 2 

2 8a 

where a, cl, c2 are constants. The interpretation of this solutions is the same as in Example 3. 
Using the known function Q(~, t), the physical quantities are recovered using the formulae 

u = U(~,t), u = V(~,t), w =-v tQt  + z t  -t 

P = exp( vzt-I + Q), P = (t2Qr)t exp( vzt-I + Q) 

Example  6. We now consider the subalgebra (v_X1 + X6) when e ~ 0. The invariant solution in this 
subalgebra must then be sought in the form 



366 V.K. Andreyev and A. A. Rodionov 

(u, u, w, p, p) = (U, V, W, Rexp(ez), Pexp(e.z)) (2.14) 

where U, V, W, R and P depend solely on t, r (the case when e = -1 corresponds to stable stratification). 
After substituting (2.14) into system (1.1), we obtain the factor system 

U t + UU r - r-iV 2 + R-1pr = O, V t + UV r + r-IUV = 0 (2.15) 

Wt +UWr +~.R-IP=O, Ur + r-lU =O, Rt +URr +eWR=O 

In turn, Eq. (2.15) can also be reduced to a single non-linear third-order equation which only differs 
from (2.13) in its right-hand side. We introduce the new independent variables and functions 

r=({2+2jC( t )d t )  )4, U= C( t ) ,  v={Vo({_.__~) (2.16) 
o r(~,t) r(~,t) 

w = -eQ, ,  R = exp Q, P = Q. expQ 

where V0(~), C(t) are arbitrary functions. Then Q(~, t) satisfies the equation 

where 

Qur; + Q~Qn = B(~,t) (2.17) 

B(~,t)= ~3V°2(~)+~C2(t) ~Ct(t) (2.18) 
r~(~,t) r2(~,t) 

Hence, the solution of the form of (2.14) is completely defined if the function Q(~, t) is known. The 
existence of a simpler right-hand side enables one to construct several exact solutions of Eq. (2.17). 

We now assume that C(t) = 0 (there is no radial flow). In this case, solution (2.14) describes motion 
in a cylindrical tube, the function B in (2.18) depends solely on r - ~ and the substitution 

reduces (2.17) to the equation 

Q#n + Q , Q -  = 1 (2.19) 

This equation has a solution in the form of a travelling wave 

Q = F(~), ~ = 11 + I~t, 13 = eonst 

Here, F is the solution of the third-order equation 

F,,, + F , F - = ~  -= 

which, by means of the substitution F = l n N  2, can be reduced to a linear Airy equation 

N - - ( - - ;  2 

where c is a constant of integration. We have 

2 3/2 4 1/3 

where C1, C2 are constants and 11/3, K1/3 are modified Bessel functions. Note that ordinary Bessel functions 
have to be taken in formula (2.20) in the case of negative ~, and the solution will oscillate. 

We now present the expression for the density 

p = N 2 exp (¢n) 

and the lines of equal density are z = -~In  N 2. 
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In the case of other functions C(t) which are non-zero, it is quite difficult to obtain solutions of Eq. (2.17) 
in explicit form. However, it is possible to choose Vo(~) and C(t) simultaneously when the right-hand side 
of Eq. (2.17) depends solely on ~ or is equal to zero. To do this, it is necessary to satisfy the equality 

for any ~, t. This equality is satisfied if 

B(~) = Bo~, V~ = Bo~ 2 -ot2~ -2, C(t) = asin(2x/-~-t + to) 

where Bo > 0 and oq to are constants. If B 0 < 0, then 

VO 2 = B0~ 2 + 0t2~ -2, C(t) = IX sh(241 B 0 It + to) 

Note that B(~) = 0 only when C(t) = ~ + co, V 2 = (x - c02~ -2. 
We now consider in somewhat greater detail the case when the right-hand side of Eq. (2.17) is equal 

to zero. When B = 0, Eq. (2.17) reduces to the second-order ordinary differential equation 

Q,  - d(t) exp (--Q) = 0 (2.21) 

where d(t) > 0 is a certain function. We now add the initial conditions 

Q(~,0) = In R0(~), Qt(~,0) = -ew0(~) (2.22) 

to (2.21). 
We assume that d(t) = do > 0 is a constant; it is then possible to write the solution of the Cauchy 

problem (2.21), (2.22) in the form 

Q= 'nIlch2['/~t+arcch(~]} ' [ a  [• 2 

wg( ) l 
a =  . . t - ~  

2ao Ro( ) 

For such a solution to exist, it is sufficient that the Froude number 

mia i w~(~)l l 
Fr= 

or min(1/R0(~)) i> 1. 
We assume that e = -1 (stable stratification) and in (2.21) put 

d( t )=hexp(h t212) ,  Q = D + h t 2 / 2 ;  h = coast > 0 

Then D(~, t) is the solution of the Cauchy problem 

D. = h(exp(-D)- I). 

We now make the substitution 

a= 4~t, o= z + n(~); 

The function Z then satisfies the equation 

D(~.,0) = In Ro(~), D,(~,0) --- wo(~) 

2n + ~-~--~+ In Ro(~)- I 

(2.23) 

Z 2 / 2 = 1 - Z -  e x p ( - Z -  H(~)) (2.24) 

It can be seen that, when H > 0 (it is sufficient to require that the Froude number Fr/> 1), Eq. (2.24) 
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has a solution which is periodic in a, Z1 ~< Z ~< Z2, where Z1 < 0, Z2 < I are the roots of its right-hand 
side. Each liquid particle oscillates when its own period, since Z1, Z2 depends on ~. Hence, in this case, 
solution (2.14) describes non-linear internal waves of various forms. 

A further, simple solution of Eq. (2.17) is possible when B = 0. In fact, suppose that Q~ = 0 (the 
pressure vanishes when Qtt = 0). Then, in (2.16), it may be assumed that Q(t) is an arbitrary function 
of time. Taking Q = q(t), where q(t) is a periodic function and q~, > 0, we obtain, in (2.14), a longitudinal 
velocity, density and pressure which are periodic in time. 
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